This material is based upon work supported by the NSF National Center for Atmospheric Research, which is a major facility operated by the U.S. National Science Foundation under Cooperative Agreement No. 1852977.

Observations (3): Satellite Radiance Data Assimilation

Presented by lvette Hernández Baños based on materials prepared by

Zhiquan (Jake) Liu

Prediction, Assimilation, and Risk Communication Section Mesoscale & Microscale Meteorology Laboratory National Center for Atmospheric Research

Outline

- 1. Background
- 2. Principles of satellite measurements
- 3. Radiative Transfer Model
- 4. Radiance DA setting with MPAS-JEDI
- 5. Variational Bias Correction
- 6. All-sky radiance DA

PCW (Canada) Arctica (Russia) "A-Train" Sentinel HIMAWARI 8 W-MO ua / Calipso /Cloudsa GOES-W 3rd generation (Japan) 140°E JASON (USA) 135°W GEO-KOMPSAT (South Korea) 128°E Environmental GOES-E 3rd FY-4 (China) 105°E METEO generation monitoring satellites TRMM (USA) 75°W INSAT (India) FY-3 93.5°É FY-4 METOP (China) 86.5°E INSAT-3D (India) 82°E METEOSAT 3rd generation (EUMETSAT) Electro-L METEOSAT-IO (EUMETSAT) 57.5°E (Russia) 76°E

Polar-orbiting satellites vs. Geostationary satellites

ECMWF data coverage for 06 UTC 05/Jul/2015 (All obs DA)

GRAD Total obs: 483826 AMSU-A Total obs: 777314 GPSRO Total obs: 15867

Global forecast improvement over time at ECMWF 2012

Current status (2023) of satellite radiance DA at ECMWF

(Courtesy of Niels Bormann, ITSC-24)

Satellite	Present orbit position (LTAN, approx.)	MW temperature sounder	MW humidity sounder	MW imager	IR broadband sounder or imager	IR hyper- spectral sounder
NOAA-15	19:30	A	х		х	
NOAA-18	22:30	A	х		х	
NOAA-19	20:30	A Č	A č		Р	
NOAA-20	13:30	А	А			А
NOAA-21	13:30	E	Е			
Aqua	13:30	х	Х			А
S-NPP	13:30	А	А			А
Metop-B	21:30	A 🖏	A Č		х	А
Metop-C	21:30	A Č	A č			А
FY-3C	19:00	х	A Č	х		
FY-3D	14:00	P 🖏	A Č	P 🖏 & X		E
FY-3E	17:30	E	A Č			
DMSP-F17	18:30		A Č	A Č		
DMSP-F18	16:00		A Č	P 🖏 & E		
GCOM-W1	13:30			A č		
GPM	Mid-incl.		A Č	A ເ		
Meteosat-9	45.5°E				А	
Meteosat-11	0°				А	
GOES-16	75.2°W				А	
GOES-18	137°W				А	
Himawari-9	140.7°E				А	
FY-4A	104.7°E					E
FY-4B	133°E					E

A – Assimilated; P – Passively monitored; E – Under evaluation; X – Failed or data excluded due to quality/transmission issues; - All-sky treatment Changes since ITSC-23 are highlighted through orange shading.

Passive

Active

GNSS radio occultation

Scan strategies and viewing geometry affect coverage and field-of-view (FOV) resolution:

cross-track scan

 Resolution degrades toward the edge of the swath because the viewing angle changes across the swath

AMSU Scanning Geometry and Resolution

conical scan

- Constant ground resolution
- Generally narrower swaths than cross-track scan swaths

What do satellite instruments measure?

Satellite passive sensors observe radiation emitted and scattered from Earth's surface and atmosphere at discrete wavelength intervals

What do satellite instruments measure?

 \Rightarrow Different sensors measure radiation at different wavelengths (e.g., MW, IR, VIS)

What is radiance?

- **Ω** Radiance (L) is the amount of energy per unit area per unit time per unit solid angle emitted at a wavelength λ (or frequency v)
 - Recall, $c = \lambda v$, where c is the speed of light.
- D Physically, can think of radiance as the "brightness" of an object
- Radiance is related to geophysical atmospheric variables by the radiative transfer equation
- Radiances are often converted to brightness temperature (equivalent blackbody temperature, by inverting Plank function)

Atmospheric Transmittance

- Consider radiation at wavelength λ with radiance $L_{\lambda 0}$ incident upon an <u>absorbing</u> <u>medium</u> of thickness *ds*
 - Use an absorption coefficient (β_a ; units m⁻¹) to quantify degree of absorption
- Ignore emission from the medium and scattering
- What is the radiance on the other side of the surface?

Atmospheric Transmittance

• <u>Beer's Law</u> gives the amount of radiation emerging from the material:

$$L_{\lambda f} = L_{\lambda 0} \exp\left[-\int_{s_1}^{s_2} \beta_a(s) ds\right]$$

 The ratio of the amount of radiation that emerges from the cube to the amount that entered is the <u>transmittance</u>:

$$\tau_{\lambda} = \frac{L_{\lambda f}}{L_{\lambda 0}} = \exp\left[-\int_{s_{1}}^{s_{2}} \beta_{a}(s) ds\right]$$
Incident radiance
$$L_{\lambda 0}$$

$$\beta_{a}$$

$$L_{\lambda f}$$

$$ds$$

Atmospheric Transmittance

- Transmittance in the real atmosphere varies in space (<u>especially in the</u> <u>vertical</u>) and time
- Letting a_{λ} denote the <u>absorption</u> of the medium at wavelength λ , then in the absence of scattering:

Radiative Transfer Model

Radiative Transfer Model

Weighting functions

- Weighting functions indicate the contribution to the outgoing radiance from various layers of the atmosphere
- Weighting functions are frequency (channel) dependent

Channel selection for NWP data assimilation

- Atmospheric sounding channels (measured radiance has no contribution from the surface)
- Window channels are sensitive to properties associated with earth and ocean surfaces as well as clouds

Radiance DA setting with MPAS-JEDI

YAML setting for radiative transfer model

Radiance DA setting with MPAS-JEDI

YAML settings for channel selection and quality control

```
obs filters:
 - filter: PreQC
   maxvalue: 0
# Useflag check #amsua-n18
 - filter: Bounds Check
   filter variables:
   - name: brightnessTemperature
                                                        channels: *amsua_n18_channels
                                                       Much more you can set
   test variables:
   - name: ObsFunction/ChannelUseflagCheckRad
                                                       for quality control, but not able
     channels: *amsua n18 channels
                                                       to cover too much this time
     options:
       channels: *amsua n18 channels
       use_flag: [-1, -1, -1, -1, 1,
                  1, 1, 1, 1, -1,
                 -1, -1, -1, -1, -1 ]
   minvalue: 1.0e-12
   action:
     name: reject
 - filter: Background Check
   threshold: 3.0
   <<: *multiIterationFilter
```


Modeling errors for satellite radiances

Modeling errors for satellite radiances

JEDI's bias correction coefficient file

```
netcdf satbias_amsua_n18 {
                                                                            satbias amsua n18.h5
dimensions:
        nchannels = 15;
                                                                            satbias cov mhs n18.h5
        npredictors = 12;
variables:
        float bias_coeff_errors(npredictors, nchannels) ;
        float bias_coefficients(npredictors, nchannels);
        int channels(nchannels) ;
        int nchannels(nchannels) ;
                nchannels:suggested_chunk_dim = 15LL;
        int npredictors(npredictors) ;
                npredictors:suggested_chunk_dim = 12LL ;
        float number_obs_assimilated(nchannels) ;
        string predictors(npredictors) ;
                                                            predictors = "constant", "zenith_angle", "cloud_liquid_water",
                                                               "lapse_rate_order_2", "lapse_rate",
// global attributes:
                                                               "cosine_of_latitude_times_orbit_node", "sine_of_latitude", "emissivity",
                string :_ioda_layout = "ObsGroup" ;
                                                               "scan_angle_order_4", "scan_angle_order_3", "scan_angle_order_2",
                                                               "scan_anale" :
                :_ioda_layout_version = 0 ;
```


YAML setting for VarBC

Situation-dependent all-sky obs error model

All-sky obs error model for AMSU-A channel 15:

Observation error is a function of cloud liquid water path retrieved from channel 1 and 2's brightness temperature

Gilbert Skill Score of 1-10-day rainfall FC w.r.t. CMORPH obs

Liu et al., 2022

Added value of all-sky AMSU-A

3DEnVar exps @ global 15km-3km variable-resolution mesh (centered over US) with the 80member 15km ensemble input

Concluding Remarks

□ Radiance DA is complex

- Cloudy radiative transfer, QC, bias correction, all-sky obs error model
- Different complexity for assimilating different sensors' data
- □ Much more to explore for satellite DA in general
 - Visible band, near IR, active sensors, small satellites, ...
- □ JEDI framework allows much greater flexibility to configure/tune without code change, ease science discovery
 - e.g., you can combine the use of CRTM and RTTOV in the same run!

