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What problem a minimization algorithm solves?
2

Cost function in incremental form:

= 0

Gradient of cost function:

Analytical solution of analysis increment:

Final linear algebra system to solve iteratively
through minimization algorithms available in OOPS



No need for computing B-1 in each iteration!
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Instead, in each iteration of a minimization algorithm, we compute

Analytical solution of analysis increment:

Final linear algebra system to solve iteratively
through minimization algorithms available in OOPS

https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/inside/jedi-
components/oops/algorithmic_details/solvers.html

Further reading for minimization algorithms in OOPS



Cost function and gradient norm reduction
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• B is decomposed as a sequence of operators (or linear variable changes) (K1 , K2
Σ, and C) and their adjoint operators (K1

T, K2
T)

• Reason for doing this is that, mathematically, B matrix is a very large-dimension 
matrix, we can not store the full matrix in memory. We have to apply these 
operators in local grid points.

B=K1K2ΣCΣTK2
TK1

T

How B is modeled in MPAS-JEDI’s 3DVar?
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B=K1K2ΣCΣTK2
TK1

T

• K1 is a linear variable change from stream function (𝛿𝜓) and velocity potential 
(𝛿𝜒 ) to zonal (𝛿𝑢) and meridional (𝛿𝑣) winds. This is similar to GSI or WRFDA.

𝛿𝑢
𝛿𝑣 =

−𝝏𝒚 −𝝏𝒙
𝝏𝒙 −𝝏𝒚

𝛿𝜓
𝛿𝜒

• K1
T is a corresponding adjoint operator.
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B=K1K2ΣCΣTK2
TK1

T

• K2 applies the linear variable change from ‘unbalanced’ variables to full 
variables. This is also similar to GSI or WRFDA

– 𝛿𝜓 is a predictor for the balanced part of 𝛿𝜒 , 𝛿𝑇 , and 𝛿𝑝!.
– Full matrix for M & N, diagonal matrix for L

• K2
T is a corresponding adjoint operator.

𝛿𝜓
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𝛿𝑄
𝛿𝑝!
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𝛿𝜓
𝛿𝜒"
𝛿𝑇"
𝛿𝑄
𝛿𝑝!,"

• 𝛿𝜒 = 𝛿𝜒$ + 𝛿𝜒" = 𝑳𝛿𝜓 + 𝛿𝜒"
• 𝛿𝑇 = 𝛿𝑇$ + 𝛿𝑇" = 𝑴𝛿𝜓 + 𝛿𝑇"
• 𝛿𝑝! = 𝛿𝑝!,$ + 𝛿𝑝!," = 𝑵𝛿𝜓 + 𝛿𝜒"
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B=K1K2ΣCΣTK2
TK1

T

• ΣCΣT represents the spatial covariance for {𝛿𝜓, 𝛿𝜒!, 𝛿𝑇!, 𝛿𝑄, 𝛿𝑝",!}. These variables are 
assumed to have not cross-variable correlations.

• Σ= ΣT is a diagonal matrix with error standard deviation

• C is a block diagonal matrix. Each block represents the spatial correlation for {𝛿𝜓, 𝛿𝜒!, 𝛿𝑇!, 
𝛿𝑄, 𝛿𝑝",!}
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B=K1K2ΣCΣTK2
TK1

T

• Even with a single variable, the dimension for spatial correlation is still large.
• SABER/BUMP-NICAS applies the spatial correlation at a coarse grid (𝐂𝐬).
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𝐂 = 𝐍𝐒𝐂𝐬𝐒𝐓𝐍𝐓 𝐍 : diagonal matrix for normalization
(to ensure the diagonal component of C equals “1”)

𝐒 = 𝐒𝐯𝐒𝐡 : Interpolation from coarse grid to full grid

ℝ+×+ ℝ+!×+! with 𝑚" ≪ 𝑚

Matrix CS are pre-computed and stored in files according
to statistics for correlation length-scales of each variable



• Through the so-called ‘NMC’ method, which uses forecast difference pairs to 
do statistics, e.g., B provided in the tutorial practice is generated with
• 366 pairs (over 3 months) of GFS 48 hour and 24 hour forecast differences at 

MPAS 60 km mesh.
• Additional tunings are applied to the estimated B.

– Reducing the error STD for all variables by a factor of 1/3
– Reducing the diagnosed horizontal lengths

for 𝛿𝜓 and 𝛿𝜒! by a factor of 1/2 
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NOT ready to support B estimation tool

How B (K1, K2, Σ, CS) is estimated?



Estimated 𝑴
at 34.8° N latitude

Ratio of balanced variance
to total variance
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Estimated Σ Estimated Horizontal
correlation length-scale

Estimated vertical
Correlation length-scales
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Single T obs test
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𝜹𝒖 𝜹𝒗 𝜹𝑻

Model level = 15

Model level = 10

Model level = 20
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• i.e., no cross-variable correlation between analysis variables (U, V, T, Q, Ps)

B=ΣCΣT

Previous slides present ‘multivariate’ B, MPAS-JEDI can 
easily do ‘univariate’ B, in that case:
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YAML configuration for 3DVar (1/6)
cost function:
cost type: 3D-Var
window begin: 2018-04-14T21:00:00Z
window length: PT6H
analysis variables: &incvars

[spechum,surface_pressure,temperature,uReconstructMeridional,uReconstructZonal]
background:
state variables: 

[spechum,surface_pressure,temperature,uReconstructMeridional,uReconstructZonal,theta,rh
o,u,qv,pressure,landmask,xice,snowc,skintemp,ivgtyp,isltyp,snowh,vegfra,u10,v10,lai,smo
is,tslb,pressure_p]

filename: ./bg.2018-04-15_00.00.00.nc
date: &analysisDate 2018-04-15T00:00:00Z
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cost function:
...
background error:
covariance model: SABER
saber central block:
saber block name: BUMP_NICAS
... more config ...

saber outer blocks:
- saber block name: StdDev
... more config ...

- saber block name: BUMP_VerticalBalance
... more config ...

linear variable change:
linear variable change name: Control2Analysis
... more config ...

YAML configuration for 3DVar (2/6)

C

Σ
K2

K1
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B=K1K2ΣCΣTK2
TK1

T



YAML configuration for 3DVar (3/6)
background error:
covariance model: SABER
saber central block:
saber block name: BUMP_NICAS
active variables: &ctlvars

[stream_function,velocity_potential,temperature,spechum,surface_pressure]
read:
io:
data directory: ./BUMP_files/bump_nicas
files prefix: bumpcov_nicas

drivers:
multivariate strategy: univariate
read local nicas: true
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B=K1K2ΣCΣTK2
TK1
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YAML configuration for 3DVar (4/6)
background error:
covariance model: SABER
saber central block:
saber block name: BUMP_NICAS
... more config ...

saber outer blocks:
- saber block name: StdDev
read:
model file:
filename: ./BUMP_files/stddev/mpas.stddev_0p33.2018-04-15_00.00.00.nc
date: *analysisDate
stream name: control
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B=K1K2ΣCΣTK2
TK1

T



YAML configuration for 3DVar (5/6)
- saber block name: BUMP_VerticalBalance
read:
io:
data directory: ./BUMP_files/bump_vertical_balance
files prefix: bumpcov_vbal

drivers:
read local sampling: true
read vertical balance: true

vertical balance:
vbal:
- balanced variable: velocity_potential
unbalanced variable: stream_function
diagonal regression: true

- balanced variable: temperature
unbalanced variable: stream_function

- balanced variable: surface_pressure
unbalanced variable: stream_function
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B=K1K2ΣCΣTK2
TK1

T



YAML configuration for 3DVar (6/6)
background error:
covariance model: SABER
saber central block:
saber block name: BUMP_NICAS
... more config ...

saber outer blocks:
- saber block name: StdDev
... more config ...

- saber block name: BUMP_VerticalBalance
... more config ...

linear variable change:
linear variable change name: Control2Analysis
input variables: *ctlvars
output variables: *incvars
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B=K1K2ΣCΣTK2
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• 3DEnVar setting 
background error:
covariance model: ensemble
... more config ...

YAML configuration for Hybrid-3DEnVar (1/2)
• 3DVar setting 

background error:
covariance model: SABER
... more config ...

• We can configure the hybrid covariance as a linear combination of two Bs !

Bhybrid = 𝛼Bstatic + 𝛽Bensemble
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(Hamill and Snyder, 2000)



YAML configuration for Hybrid-3DEnVar (2/2)
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• We can configure the hybrid covariance as a linear combination of two Bs !
background error:

covariance model: hybrid
components:
- weight:

value: 0.5
covariance:
covariance model: SABER
... more config ...

- weight:
value: 0.5

covariance:
covariance model: ensemble
... more config ...

Bhybrid = 𝛼Bstatic + 𝛽Bensemble



• To reduce disk space usage, we use “mpasout” file instead of “restart” file for 
MPAS-JEDI’s background and analysis file.

• Also “time invariant” fields in a separate file and “mpasout” file excludes those 
“time invariant” fields and also physical tendency fields.

• So MPAS-JEDI will need to read in two streams (two files)
• “invariant” stream: mesh info, sfc input variables (landmask, shdmin, albedo12m, 

etc) and parameters for gravity wave drag over orography, vertical coordinate etc.
• “da_state” stream (i.e., ‘mpasout’ file): fields needed for DA purposes (either 

analysis variables or fixed input needed for CRTM or other obs operators).

2-stream I/O (1/3)
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• For a cold start forecast, “invariant” stream file should be set to the 
“invariant.nc” file, generated by MPAS init_atmosphere executable.

– In “namelist.atmosphere”
&restart

config_do_DAcycling = false
/

• For forecast step of cycling exp, “input” stream should point the file generated 
from “da_state” stream.

– In “namelist.atmosphere”
&restart

config_do_DAcycling = true
/

2-stream I/O (2/3)
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an invariant.nc file is linked or copied to the working directory

an invariant.nc file is linked or copied to the working directory



• For DA step of cycling exp, setting will be
– In “namelist.atmosphere”

&restart
config_do_DAcycling = true

/
&assimilation

config_jedi_da = true
/

2-stream I/O (3/3)
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