Basics of Data Assimilation

Jake Liu (liuz@ucar.edu)

Prediction, Assimilation, and Risk Communication Section Mesoscale & Microscale Meteorology Laboratory National Center for Atmospheric Research

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977

MPAS-JEDI Tutorial, INPE, 15-16 August, 2024

Outline

2

- Scalar case
- Case with two state variables
- General n-dimensional case

What is data assimilation?

- A probabilistic method to obtain the best-possible estimate of state variables of a dynamic/physical system
- In the atmospheric sciences, DA typically involves combining a short-term model forecast (i.e., Background or Prior) and observations, along with their respective errors characterization, to produce an *analysis (Posterior)* that can initialize a numerical weather prediction model (e.g., WRF or MPAS)

- State variable to estimate "x", e.g., consider this morning's 2-meter temperature at INPE, at 9 am local time, i. e., 12 UTC,
- Now we have a "background" (or "prior") information x_b of x, which is from a 6-h MONAN-v1.0 forecast initiated from 06 UTC GFS analysis.
- We also have an observation y of x at a surface station at INPE
- What is the best estimate (analysis) x_a of x ?

- We can simply average xb and y: $x_a = \frac{1}{2}(x_b + y)$
	- This actually means we trust equally the background and observation, giving them equal weight
- But if xb and y's accuracy are different and we have some knowledge about their errors
	- e.g., for background, we have statistics (e.g., mean and variance) of $x_b y$ from the past
	- For observation, we have instrument error information from manufacturer

• Then we can do a weighted mean: $x_a = ax_b + by$ in a least square sense, i.e.,

Minimize $J(x) = \frac{1}{2}$ $(x-x_b)^2$ $\sigma_b^ (\frac{c_b}{2})^2 + \frac{1}{2}$ $(x-y)^2$ σ_o^- 2

Requires $dJ(x)$ $\frac{f(x)}{dx} = \frac{(x - x_b)}{\sigma_b^2}$ $\sigma_b^ \frac{x_b}{2}$ + $\frac{(x-y)}{2}$ $\sigma_o^ \frac{(-y)}{2} = 0$

Then we can easily get $\quad \chi_{a}^{} = \frac{\sigma_{o}^{2}}{\sigma_{b}^{2}+\sigma_{o}^{2}}$ 2 $\frac{\sigma_o^2}{\sigma_b^2+\sigma_o^2}x_b + \frac{\sigma_b^2}{\sigma_b^2+\sigma_o^2}$ 2 σ_b^2 + σ_o^2 $\frac{1}{2}y = \frac{1}{1+\sigma^2}$ $\frac{1}{1+\sigma_b^2/\sigma_o^2} x_b + \frac{1}{1+\sigma_o^2/\sigma_b^2}$ $\overline{2}$ \overline{y}

Or we can write in the form of analysis increment

Called "Innovation" or O minus B, or OMB

$$
x_a - x_b = \frac{\sigma_b^2}{\sigma_b^2 + \sigma_o^2} (y - x_b) = \frac{1}{1 + \sigma_o^2 / \sigma_b^2} (y - x_b)
$$

Minimize
$$
J(x) = \frac{1}{2} \frac{(x - x_b)^2}{\sigma_b^2} + \frac{1}{2} \frac{(x - y)^2}{\sigma_o^2}
$$

is actually equivalent to maximize a Gaussian Probability Distribution Function (PDF)

$$
ce^{-J(x)}
$$

Assume errors of X_b and y are unbiased

Two state variables case

- Consider two state variables to estimate: INPE and USP's 2m temperatures x_1 and x_2 at 12 UTC today.
- Background from 6-h forecast: x_1^b and x_2^b and their error covariance with correlation *c*

$$
\mathbf{B} = \begin{bmatrix} \sigma_1^2 & c\sigma_1\sigma_2 \\ c\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix} = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} \begin{bmatrix} 1 & c \\ c & 1 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}
$$

- We only have an observation y_1 at the INPE station and its error variance $\sigma_{\rm o}^2$
- Now we want to estimate T at 2 locations with obs at one location

NCAR

Analysis increment for two variables

Unobserved variable x₂ gets updated through the error correlation *c* in the background error covariance.

In general, this correlation can be correlation between two locations (spatial), two variables (multivariate), or two times (temporal).

Vertical resolution of the DMI-HIRLAM system

General Case: vector and matrix notation

background error covariance

state vector **observation** vector

Observation error covariance

General Case: cost function

$$
1 \times 1
$$

1 x m m x m m x 1

$$
J(x) = \frac{1}{2} (x - x^{b})^{T} \mathbf{B}^{-1} (x - x^{b}) + \frac{1}{2} [\mathbf{H} x - y]^{T} \mathbf{R}^{-1} [\mathbf{H} x - y]
$$

H maps x to y space, e. g., interpolation. Terminology in DA: observation operator Superscript 'T': transpose of a vector or matrix, Superscript '-1': inverse of a symmetric covariance matrix

Minimize J(x) is equivalent to maximize a multi-dimensional Gaussian PDF

$$
Constant * e^{-J(x)}
$$

General Case: analytical solution

Again, minimize J requires its gradient (a vector) with respect to x equal to zero:

$$
\nabla J_{\mathbf{x}}(\mathbf{x}) = \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}_{\mathbf{b}}) - \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}[\mathbf{y} - \mathbf{H}\mathbf{x}] = 0
$$

This leads to analytical solution for the analysis increment: m x 1

$$
x^{a} - x^{b} = \mathbf{BH}^{T}(\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R})^{-1} [y - \mathbf{H}x^{b}]
$$

Kalman gain matrix
Innovation or OMB vector

HBH^T : background error covariance projected into observation space

BH^T: background error covariance projected into cross background-observation space

Iterative algorithm to find minimum of cost function

- **Descending algorithms**
	- **Descending direction: γ_n (Ndimensional vector)**
	- **Descending step:μ_n**

$$
x_{n+1} = x_n + \mu_n \gamma_n
$$

from Bouttier and Courtier 1999

Precision of Analysis with optimal B and R

 $\mathbf{A}^{-1} = \mathbf{B}^{-1} + \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}$

Generalization of scalar case
$$
\frac{1}{\sigma_a^2} = \frac{1}{\sigma_b^2} + \frac{1}{\sigma_o^2}
$$

Or in another form: $\mathbf{A} = (\mathbf{I} - \mathbf{KH})\mathbf{B}$

With

$\mathbf{K} = \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}$

called Kalman gain matrix

Precision of analysis: more general formulation

$$
\mathbf{A} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{B}_{t}(\mathbf{I} - \mathbf{K}\mathbf{H})^{\mathrm{T}} + \mathbf{K}\mathbf{R}_{t}\mathbf{K}^{\mathrm{T}}
$$

where B_t and R_t are "true" background and observation error covariances.

This formulation is valid for any given gain matrix K, which could be suboptimal (e.g., due to incorrect estimation/specification of B and R).

Analysis increment with a single humidity observation

$$
x^{a} - x^{b} = \mathbf{B} \mathbf{H}^{T} (\mathbf{H} \mathbf{B} \mathbf{H}^{T} + \mathbf{R})^{-1} [y - \mathbf{H} x^{b}]
$$

$$
x_l^a - x_l^b = \frac{c_{lk}\sigma_l \sigma_k}{\sigma_k^2 + \sigma_{ok}^2} (y_k - x_k^b)
$$

It is generalization of previous two variables case:

Other Remarks

- Observation operator H() can be non-linear and thus analysis error PDF is not necessarily Gaussian
- J(x) can have multiple local minima. Final solution of least square depends on starting point of iteration, e.g., choose the background x_b as the first guess.

Other Remarks

- **B** matrix is of very large dimension, explicit inverse of **B** is impossible, substantial efforts in data assimilation were given to the estimation and modeling of **B**.
- **B** shall be spatially-varied and time-evolving according to weather regime.
- Analysis can be sub-optimal if using inaccurate estimate of **B** and **R**.
- Could use non-Gaussian PDF
	- Thus not a least square cost function
	- Difficult (usually slow) to solve; could transform into Gaussian problem via variable transform

Variational vs. Ensemble DA

- They are solving the same cost function, by using different techniques
- These days, combining both techniques are common at operational centers
	- NOAA/NCEP: hybrid-4DEnVar + LETKF
	- ECMWF: ensemble of 4DVar
	- UKMO: hybrid-4DVar + LETKF

Further reading

