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Outline

• Scalar case

• Case with two state variables

• General n-dimensional case
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What is data assimilation?

• A probabilistic method to obtain the best-possible estimate of state 
variables of a dynamic/physical system

• In the atmospheric sciences, DA typically involves combining a 
short-term model forecast (i.e., Background or Prior) and 
observations, along with their respective errors characterization, to 
produce an analysis (Posterior) that can initialize a numerical weather 
prediction model (e.g., WRF or MPAS)



Scalar Case

• State variable to estimate “x”, e.g., consider this morning’s 2-meter 
temperature at INPE, at 9 am local time, i. e., 12 UTC, 

• Now we have a “background” (or “prior”) information xb of x, which is 
from a 6-h MONAN-v1.0 forecast initiated from 06 UTC GFS analysis.

• We also have an observation y of x at a surface station at INPE

• What is the best estimate (analysis) xa of x?



Scalar Case
• We can simply average xb and y: 

– This actually means we trust equally the background and observation, giving 
them equal weight

• But if xb and y’s accuracy are different and we have some knowledge 
about their errors
– e.g., for background, we have statistics (e.g., mean and variance) of xb – y from 

the past
– For observation, we have instrument error information from manufacturer

xa = 1
2 (xb + y)



Scalar Case
• Then we can do a weighted mean:                         in a least square sense, 

i.e.,
Minimize 

Requires

Then we can easily get

Or we can write in the form of analysis increment
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Called “Innovation” or O minus B, or OMB



Scalar Case

Minimize 

is actually equivalent to maximize a Gaussian Probability 
Distribution Function (PDF)
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Assume errors of Xb and y are unbiased



Analysis:   
N(13.46, σa=0.832)
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σ a

2 =
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σ b
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2
σa is smaller than 
σb and σo.

Observation: 
N(15, σo=1)

Background: 
N(10, σb=1.5)

analysis precision is the sum
of background precision and
observation precision

A probabilistic 
view of 
scale case



Two state variables case
• Consider two state variables to estimate: INPE and USP’s 2m temperatures 

x1 and x2 at 12 UTC today.

• Background from 6-h forecast: x1
b and x2

b  and their error covariance with 
correlation c
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• We only have an observation y1 at the INPE station and its error variance 
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Analysis increment for two variables
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Unobserved variable x2 gets updated through the error correlation c in the background 
error covariance.

In general, this correlation can be correlation between two locations (spatial), two 
variables (multivariate), or two times (temporal).

INPE

USP



Model state 
x, ~107

Observations
yo, ~105-106

General Case



General Case: vector and matrix notation
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state vector observation vector
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background error covariance
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Observation error covariance
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Correlation matrix



General Case: cost function

J(x) = 1
2
(x − xb )TB−1(x − xb )+ 1

2
[Hx − y]TR−1[Hx − y]

H maps x to y space, e. g., interpolation.
Terminology in DA: observation operator
Superscript ‘T’: transpose of a vector or matrix,
Superscript ‘-1’: inverse of a symmetric covariance matrix

Minimize J(x) is equivalent to maximize a multi-dimensional Gaussian PDF 

e−J (x )Constant *

1 x m m x 1m x m n x n n x 11 x n1 x 1



General Case: analytical solution

xa − xb = BHT(HBHT +R)−1[y−Hxb ]

0][)()( 11 =---=Ñ -- HxyRHxxBx T
bxJ

Again, minimize J requires its gradient (a vector) with respect to x equal to zero:

This leads to analytical solution for the analysis increment:

HBHT : background error covariance projected into observation space

BHT : background error covariance projected into cross background-observation space

Innovation or OMB vectorKalman gain matrix

m x 1



Iterative algorithm to find minimum of cost function

• Descending algorithms

– Descending direction: γn (N-
dimensional vector)

– Descending step:μn 



Precision of Analysis with optimal B and R 

−1A = −1B + TH −1R H

K = BHT(HBHT +R)−1
With

called Kalman gain matrix

 1
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2Generalization of scalar case

A = (I −KH)BOr in another form:



Precision of analysis: more general formulation

A = (I −KH)Bt (I −KH)
T +KRtK

T

where Bt and Rt are “true” background and observation error covariances. 

This formulation is valid for any given gain matrix K, which could be 
suboptimal (e.g., due to incorrect estimation/specification of B and R).



cv_options=6 in WRFDA
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Analysis increment with a single humidity observation
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It is generalization of previous 
two variables case:

xa − xb = BHT(HBHT +R)−1[y−Hxb ]



Other Remarks
• Observation operator H() can be non-linear and thus analysis error PDF is 

not necessarily Gaussian

• J(x) can have multiple local minima. Final solution of least square depends 
on starting point of iteration, e.g., choose the background xb as the first guess.



Other Remarks

• B matrix is of very large dimension, explicit inverse of B is impossible, 
substantial efforts in data assimilation were given to the estimation and 
modeling of B.

• B shall be spatially-varied and time-evolving according to weather regime.

• Analysis can be sub-optimal if using inaccurate estimate of B and R.

• Could use non-Gaussian PDF
– Thus not a least square cost function
– Difficult (usually slow) to solve; could transform into Gaussian problem via variable 

transform



Variational vs. Ensemble DA

• They are solving the same cost function, by using different techniques

• These days, combining both techniques are common at operational centers
– NOAA/NCEP: hybrid-4DEnVar + LETKF
– ECMWF: ensemble of 4DVar
– UKMO: hybrid-4DVar + LETKF 



Further reading


