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ABSTRACT 

As in many other areas of engineering and applied science, Machine Learning (ML) is having a 

profound impact in the domain of Weather and Climate Prediction. A very recent development in this 

area has been the emergence of fully data-driven ML prediction models which routinely claim 

superior performance to that of traditional physics-based models. In this work, we examine some 

aspects of the forecasts produced by an exemplar of the current generation of ML models, Pangu-

Weather, with a focus on the fidelity and physical consistency of those forecasts and how these 

characteristics relate to perceived forecast performance. The main conclusion is that Pangu-Weather 

forecasts, and possibly those of similar ML models, do not have the fidelity and physical consistency 

of physics-based models and their advantage in accuracy on traditional deterministic metrics of 

forecast skill can be at least partly attributed to these peculiarities. Balancing forecast skill and 

physical consistency of ML-driven predictions will be an important consideration for future ML 

models. However, and similarly to other modern post-processing technologies, the current ML models 

appear to be already able to add value to standard NWP output for specific forecast applications and 

combined with their extremely low computational cost during deployment, are set to provide an 

additional, useful source of forecast information.          

 

Correspondence to: Massimo Bonavita, ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom.  

E-mail: massimo.bonavita@ecmwf.int 

Keywords: Data driven forecasting, Machine Learning, Neural networks 

 



 

 

1.  Introduction 

As it has been the case in disparate areas of applied science and engineering, Machine Learning (ML) 

methods are having a profound and pervasive impact in Numerical Weather Prediction (NWP) and 

Climate monitoring and prediction (e.g., Bonavita et al., 2023; Schneider et al., 2022; Bonavita et al., 

2021, for recent overviews). The vast majority of applications of ML methods in NWP and Climate 

have sought to deploy ML algorithms in specific parts of the NWP and Climate prediction chain, 

aiming to take advantage of the extremely low computational cost of the deployed ML models and 

the fact that the ML algorithms can be effective at learning complex, nonlinear mappings if large and 

accurate datasets are available for their training. Examples include the use of ML algorithms for 

observation pre-processing and quality control, data assimilation, emulation of observation operators, 

emulation of model components, development/improvement of new model parameterisations, post-

processing of NWP and Climate prediction outputs (see e.g., Krasnopolsky, 2023, for a recent review 

of some of the main research areas). The route of adapting ML tools to specific aspect of the NWP 

workflow has been the one typically favoured by practitioners of the field as it facilitates 

understanding and interpretability of the ML model outputs, which is crucial for user uptake and also 

for long-term continued development (e.g., McGovern et al., 2023).  

In the last few years, a parallel and growing development area has emerged which aims to use ML 

methods to produce fully data-driven forecast models for NWP and Climate prediction. These efforts 

have been made possible by the availability of high-quality, multi-decadal Earth system reanalysis 

products, such as the ECMWF ERA5 reanalysis (Hersbach et al., 2020), which have provided the ML 

community with readily accessible, curated, and accurate datasets necessary for training of the ML 

models. The first notable results in this area have been achieved by Keisler, 2022, where the trained 

ML model shows deterministic forecast skill scores which are competitive with NOAA Global 

Forecast System (GFS) operational forecasts and comparable with ECMWF Integrated Forecast 

System (IFS) operational forecasts. Compared to earlier efforts, Keisler’s model was trained on a 

dataset of ERA5 reanalysis fields at significantly higher horizontal (1 degree lat/lon regular grid) and 



 

 

vertical (13 pressure levels, from 50 to 1000hPa) resolution every 6 hours, with the explicit aim of 

learning the set of physical laws driving the ECMWF IFS and other traditional NWP models. After 

the appearance of Keisler’s work, various independent groups, often affiliated with large technology 

corporations, have announced the development of fully data-driven ML weather forecast models and 

published initial evaluations of their performance. Notable examples include FourCastNet (Pathak et 

al., 2022); Pangu-Weather (Bi et al., 2022, 2023); SwinRDM (Chen et al., 2023a); ClimaX (Nguyen 

et al., 2023); GraphCast (Lam et al., 2022), FengWu (Chen et al., 2023b). While these ML models 

show variations in their architecture and training, some common fundamental themes are apparent. 

With respect to the original Keisler’s model, all these models are built using vastly larger training 

datasets obtained by sampling the ERA5 reanalysis fields at higher horizontal/vertical/temporal 

resolution (typical values are 0.25 lat/lon regular grid, 13 to 37 vertical pressure levels, 1 to 6-hour 

temporal sampling). This is a deliberate design choice which is justified by the goal of increasing the 

realism and fidelity of the weather features the ML model is able to predict, though at the cost of 

vastly increasing the memory footprint of the model, which can become a limiting factor during 

training (Lam et al., 2022). At the same time, exploiting the increased dimensionality of the data has 

the effect of requiring a ML model with a vastly larger number of parameters (O(10-100)) than in the 

original Keisler’s model, which used a Graph Neural Network architecture with 6.7 million trainable 

parameters. The large number of trainable parameters can become an issue in terms of computational 

cost and performance during the training phase of the ML model (Bi et al., 2022). 

Together with increased size of the training dataset, ML model complexity, memory footprint and 

computational training costs, the forecast performance of the ML models has improved. All the most 

recent ML models claim to be able to outperform the ECMWF IFS system (currently the most 

accurate physics-based global NWP forecasting system in the world) on a variety of performance 

metrics for deterministic, single-shot prediction (Bi et al., 2022, 2023; Chen et al., 2023a, b; Lam et 

al., 2022). Together with the strikingly low computational cost and energy consumption of the ML 

model during the deployment phase with respect to standard NWP models (O(104) faster and 



 

 

computationally/energy cheaper), claims that the era of traditional NWP is rapidly coming to an end 

in favour of a new generation of ML-driven Weather Prediction are becoming common (MLWP; Bi 

et al., 2022, 2023; Chen et al., 2023; Lam et al., 2022). Notwithstanding the tumultuous progress of 

MLWP in the past few years, we consider here the question of to what extent and with which caveats, 

if any, these claims are justified, building on the initial evaluation in Ben-Bouallegue et al., 2023, but 

with a specific focus on the spatial and physical realism of the MLWP forecast fields.  The approach 

we have taken here is to choose a representative sample of the current generation of MLWP model 

(Pangu-Weather, Bi et al., 2022, 2023) and analyse some aspects of its output from the point of view 

of physical consistency and fidelity and how these characteristics affect perceived forecast 

performance. We have done this exercise by comparing the characteristics of Pangu-Weather forecasts 

to those of the ERA5 reanalysis fields used in the training and the operational ECMWF IFS physics-

based model which is the NWP modelling system against which the forecast performance of Pangu-

Weather and other MLWP models is typically validated. This comparison is obviously not exhaustive 

but aims to highlight differences between a standard NWP model and a representative MLWP model 

that we believe are significant from a meteorological and forecasting perspective.   

Outline of the paper is as follows. In section 2 we provide a brief description of the Pangu-Weather 

model. In section 3 we provide diagnostics of the behaviour of the Pangu-Weather model from an 

energy spectral decomposition perspective and discuss their consequences on the Pangu-Weather 

forecast characteristics. In section 4 we look at the balance between mass and wind fields as 

represented in the Pangu-Weather model, ERA5 and ECMWF IFS. In section 5 we look at forecast 

performance of Pangu-Weather and ECMWF IFS for selected variables. In sections 6 we discuss the 

main findings of this work, their relevance in the current debate on NWP and MLWP and a personal 

outlook on the possible evolution of MLWP.                   

     

2. A representative MLWP model: Pangu-Weather 

Pangu-Weather (Bi et al., 2022, 2023) is a Deep Learning (DL) forecast model trained on 43 years 



 

 

(1979-2021) of ERA5 reanalysis data developed by researchers at Huawei Cloud Computing. ERA5 

global analyses are retrieved hourly at 0.25 deg regular lat/lon horizontal resolution and 13 pressure 

levels, plus a small selection of surface fields (T2m, u/v10m, mslp). The architecture of Pangu-

Weather is based on a variation of the Transformer model (Vaswani et al., 2017) which is widely 

adopted in large language models (GPT-3, BERT), and, more specifically, its adaptation to Computer 

Vision tasks (Vision Transformers, Dosovitskyi et al., 2021).  The Pangu-Weather model is one of the 

largest in terms of number of parameters (~256M), possibly due to the quadratic complexity in the 

number of tokens induced by the Transformer architecture, which has the effect of requiring extended 

and computationally intensive training (Bi et al., 2022, sec. 3.4) and the need to train separate ML 

models for different forecast ranges (see below).       

An interesting peculiarity of Pangu-Weather is the technique used for producing forecasts at different 

lead times. Most other ML models predict the evolution of the atmosphere with a Dt=6 hours timestep 

future and forecasts at longer lead times, which are always multiple integers of Dt, are obtained 

autoregressively: 

𝑋!"# = 𝑀𝐿(𝑋!"#$∆!)       (1) 

As noted by the Pangu-Weather developers and others, the repeated application of an imperfect model 

leads to rapid accumulation of errors and can drastically limit the predictive skill of the model. Other 

ML models obviate the problem by progressively increasing the forecast time over which the ML 

model is optimised to minimise forecast errors (e.g., Lam et al., 2022), typically at the price of 

increased blurriness of the forecasted states. The solution adopted in Pangu-Weather is called 

“Hierarchical Temporal Aggregation” (HTA) and effectively involves the development of 4 separate 

ML models trained to forecast at different lead times of 1, 3, 6 and 24 hours. The advantages of the 

technique are the reduction of the number of applications of the ML model for any given forecast lead 

time, which may reduce forecast error growth; and the ability to provide forecasts with 1-hour 

granularity, which is the highest possible given that ERA5 fields are archived hourly. A possible 

disadvantage is that applying different ML models in a forecast can lead to unphysical discontinuities 



 

 

in forecast evolution. 

Another aspect where Pangu-Weather differs from the other published ML forecast models is that it 

uses a mean absolute error loss function (L1 norm) in the training instead of the more common mean 

squared error (L2) norm. The choice is justified as beneficial for the convergence speed of the 

training, which may be a consequence of the general property of L1 loss functions of encouraging 

sparsity in regression problems (e.g., Hsieh, 2023).   

The Pangu-Weather model is publicly available (https://github.com/198808xc/Pangu-Weather) for 

non-commercial use and has been used to build a six month dataset of forecasts (October 2018 to 

March 2019, every three days; Matthew Chantry, ECMWF, personal communication) started from 

both ERA5 analysis fields and ECMWF IFS analyses. This dataset has been used in this study, 

together with publicly available ERA5 reanalysis fields and ECMWF IFS analyses and forecasts over 

the same period. Additionally, a selection of MLWP models have been run in a semi-operational 

configuration at ECMWF since August 2023 (graphical outputs available at https://charts.ecmwf.int). 

Some of these daily graphical products have also been used in this work.        

          

3. Spectral diagnostics of Pangu-Weather, ERA5 and ECMWF IFS 

A widely identified issue with forecasts produced by ML models is that they appear to become 

increasingly “blurry” with increasing forecast lead times (Keisler, 2020; Lam et al., 2022). This 

behaviour of the ML models is to be expected on general grounds (Sønderby et al. 2020), as they are 

usually trained to optimize a weighted mean squared/absolute error (L2/L1 norm). Thus, the way the 

ML models express increasing uncertainty over longer lead times is by producing forecasts closer to 

the forecast mean of the forecast error pdf, which will result in progressively smoother forecast states. 

This is indeed what happens in the Pangu-Weather model as well. In Figure 1 we show four examples 

of energy power spectra from the ERA5 analysis, Pangu-Weather forecasts and ECMWF IFS 

forecasts at different lead times. For consistency, ERA5 analyses and ECMWF IFS forecasts were 

first interpolated to the 0.25 deg regular lat/lon grid used by Pangu-Weather and then transformed to 



 

 

spectral space. First thing to notice is that the ECMWF IFS forecast spectra do not change appreciably 

with forecast lead time and remain close to the ERA5 analysis spectra until about wave number 200 

(~200 km wavelength), above which they start to diverge (being more energetic) likely due to the 

higher spatial resolution of the ECMWF IFS forecasts (~ 9km horizontal grid spacing vs ~31 km of 

ERA5 analyses) and, to a lesser extent, the impact of employing models from different IFS cycles 

(IFS Cycle 45r1 for the ECMWF IFS versus IFS Cycle 41r2 for ERA5). Conversely, the spectra of 

Pangu-Weather forecasts show a noticeable divergence from the ERA5 analysis spectra in terms of 

reduced energy already from wavenumbers in the 60-80 range (~500-700 km wavelength). 

Additionally, this reduction in the spectral energy of the Pangu-Weather forecasts shows a marked 

sensitivity to forecast lead time, especially noticeable for the t+24h forecasts. For completeness, note 

that deterministic forecasts from ERA5 re-analyses (hindcasts) at the original resolution and IFS 

model cycle are also freely available. Their forecast spectra are not shown here because they are 

largely indistinguishable from the spectra of ERA5 analysis fields. 

This confirms that Pangu-Weather, like other ML models, produces less spectrally resolved forecasts 

than the analysis fields used in their training and even less than those produced by the ECMWF IFS 

forecasts which are typically used to verify against. In other words, the effective resolution of Pangu-

Weather forecasts is closer to 500-700 km than to the nominal 0.25 deg and is decreasing with forecast 

lead time, most notably during the first 24 hours. The Hierarchical Temporal Aggregation idea of 

training and deploying different models for different lead times seems however effective in reducing 

the further loss of spectral energy beyond t+24h lead time.          



 

 

 

Figure 1: Power spectral density as a function of total wavenumber of ERA5 analysis (continuous 

line), ECMWF IFS operational forecasts (dotted lines) and Pangu-Weather forecasts (dashed lines) 

at lead times t+12h, t+24h and t+120h. Top row: temperature field at 850hPa (left panel) and 250 

hPa (right panel); Bottom row: wind speed field at 850hPa (left panel) and 250 hPa (right panel).   

  

What are the consequences of the rapid reduction in the Pangu-Weather forecast spectral energy with 

increasing wavenumber? Looking at standard forecast maps used for synoptic evaluation, the 

differences between Pangu-Weather and ECMWF IFS forecasts are not striking, e.g., Figure 2, 

although the Pangu-Weather contours appear somewhat smoother at closer inspection.  

  



 

 

Figure 2: T+72 hour forecasts of mean sea level pressure (continuous lines, 5 hPa intervals) and wind 

speed at 850 hPa from Pangu-Weather (left panel) and the ECMWF IFS (right panel) valid on 06-

08-2023 at 00 UTC. 

 

However, in forecasting weather phenomena which have high variability on sub-synoptic and 

mesoscale spatial modes, the characteristics of the Pangu-Weather model can become more 

noticeable. An example is given in Figure 3, where we present five-day (t+132h) forecasts of the 

evolution of tropical cyclone Doksuri. Typhoon Doksuri was a category 4 tropical cyclone which 

caused extensive damage in the Philippines, Taiwan, China and Vietnam, in late July 2023. It is 

visually apparent how typhoon Doksuri evolves in the Pangu-Weather forecast to become a shallow 

low pressure system (986 hPa min mslp), while it remains an active tropical cyclone in the ECMWF 

IFS forecast (957 hPa min mslp), though still not as deep as it was in reality (944 hPa, IBTrACS 

version v04r00, Knapp et al., 2018). Based on the spectral characteristics of the Pangu-Weather model 

forecasts, this behaviour is to be expected and leads to performance in the forecast of the intensity of 

tropical cyclones which is not as good as that of state-of-the-art NWP Earth system simulators like 

the IFS (see Ben-Bouallegue et al., 2023 for a detailed discussion). 

 

3.1 Is Pangu-Weather emulating the ECMWF ensemble forecast mean? 

As mentioned earlier, a common interpretation of the progressive loss of detail for increasing forecast 

ranges of ML data-driven models is that these models are effectively trained to optimise a mean 

squared/absolute error (L2/L1) norm of forecast errors at increasing lead times. This is equivalent, 

for normally distributed variables, to estimate the posterior mean/median of the forecast distribution 

conditioned on the set of input fields used in the training. As the forecast pdf becomes broader with 

increased forecast lead time, the ML forecast will express the growing uncertainty by progressively 

smoothing out unpredictable details from the forecast. It is thus of interest to see if the Pangu-Weather 

forecasts share some of the features of the forecast mean fields produced by the ECMWF ensemble 

prediction system (ENS; ECMWF, 2022). The ECMWF ENS system is expressly set up to sample 



 

 

the forecast pdf of the ECMWF IFS starting from a sample of the initial uncertainties estimated by 

the ECMWF Ensemble of Data Assimilation (EDA; Bonavita et al., 2016)   

    

Figure 3: T+132 hour forecasts of mean sea level pressure (continuous lines, 5 hPa intervals) and 

wind speed at 200 hPa for Pangu-Weather (left panel) and the ECMWF IFS (right panel) valid on 

26-07-2023 at 012 UTC in the area covering typhoon Doksuri. 

 
In Figure 4 we present a similar set of plots as in Figure 1 but showing curves for the energy spectra 

of the ECMWF ENS ensemble forecast mean (EM) instead of the deterministic ECMWF IFS forecast. 

From these plots it is immediately apparent that the spectral signature of the ECMWF EM forecasts 

is quite different from that of the Pangu-Weather forecasts. In the short forecast range (12-24 hours), 

where error evolution on synoptic and sub-synoptic scales is approximately linear, the EM spectra 

closely track the ERA5 analysis spectra, while the Pangu-Weather forecasts already show the 

signature of heavy damping of spectral modes above approx. wavenumber 60. On the other hand, at 

forecast lead time well into the medium range (t+120h), the ECMWF EM fields show reduced energy 

at synoptic ranges, where error growth becomes nonlinear and ensemble averaging acts to smooth out 

unpredictable forecast modes (Leith, 1974; Toth and Kalnay, 1997), while they maintain a comparable 

or larger spectral signature than Pangu-Weather forecasts for higher spatial frequency modes above 

approx. 120-140.   



 

 

 

Figure 4: Power spectral density as a function of total wavenumber of ERA5 analysis (continuous 

black line), ECMWF IFS operational ensemble forecast mean (EM, continuous lines of different 

colours) and Pangu-Weather forecasts (dashed lines) at lead times t+12h, t+24h and t+120h. Top 

row: temperature field at 850hPa (left panel) and 250 hPa (right panel); Bottom row: wind speed 

field at 850hPa (left panel) and 250 hPa (right panel).   

 

These results indicate that Pangu-Weather forecasts differ from ECMWF EM forecasts in the sense 

that they have both too little energy at short forecast ranges and high wave numbers, and too much 

energy in the medium range at synoptic and sub-synoptic scales. This is important in terms of the 

implications of employing the Pangu-Weather model in ensemble forecasting configuration and also 

for the interpretation of the results on Pangu-Weather forecast skill (Sec. 5). 

 

4. Physical balances in Pangu-Weather 

4.1. Geostrophic wind balance 

Standard NWP models predict the evolution of the atmosphere by solving discretised forms of the 

governing physics-based equations (Pu and Kalnay, 2018). This set of equations describe fundamental 



 

 

conservation laws (momentum, mass, energy and constituents) that the atmospheric system obeys, 

and which implicitly enforce balances between the different variables that describe the atmosphere. 

One of the fundamental physical balances is the one between the mass variables (temperature, 

geopotential) and the wind field. Neglecting friction and acceleration, scale analysis (Holton, 2004) 

leads to a stationary diagnostic geostrophic balance between horizontal wind and geopotential in local 

Cartesian coordinates: 

𝐕& =
'
(
𝐤) × ∇)Φ							(2)  

Where 𝐕& = /𝑢&, 𝑣&3, 𝑓 = 2Ω𝑠𝑖𝑛(𝜑) is the Coriolis parameter, and ∇)Φ is the gradient of the 

geopotential on an isobaric surface. The geostrophic balance is a good approximation for extra-

tropical synoptic and larger scale flows, and it is interesting to see to what degree Pangu-Weather 

forecasts respect this balance. 

In Figure 5 we present vertical profiles of the intensity of geostrophic wind, ageostrophic wind (𝐕*& ≡

𝐕 − 𝐕&) and the ratio of the intensity of ageostrophic over geostrophic winds. It is remarkable how 

the ECMWF IFS model remains close to the ERA5 analysis for all three quantities and at all lead 

times (in fact the ageostrophic wind shows a modest increase around the tropopause and lower 

stratosphere at longer lead times, possibly due to spin up effects). On the other hand, the Pangu-

Weather forecasts profiles show reduced intensity of both geostrophic and ageostrophic winds, which 

also tend to further reduce for increasing lead time.  

 

     



 

 

 
Figure 5: Vertical profiles of the intensity of geostrophic wind (first column), ageostrophic wind 

(second column) and ratio of the intensity of ageostrophic over geostrophic wind (third column) over 

the extra-tropics (|𝑙𝑎𝑡| ≥ 20	𝑑𝑒𝑔) for the ERA5 reanalysis (continuous black line), Pangu-Weather 

forecasts (first row, dashed lines) and ECMWF IFS forecasts (second row, dot-dashed lines) at lead 

times t+12h, t+24h and t+120h. Values averaged over the 2023-09-07 to 2023-09-09 period.  

 

Additionally, this reduction in geostrophic and ageostrophic wind intensity is not balanced, i.e., the 

ratio of ageostrophic over geostrophic wind intensity is smaller than that diagnosed from the ERA5 

analysis (and ECMWF IFS forecasts) and further decreasing with lead time. This implies that the 

wind and geopotential forecasts from the Pangu-Weather model are increasingly dynamically 

inconsistent with one another with forecast lead times. 

Ageostrophic winds in midlatitude synoptic systems are connected with areas of 

convergence/divergence which, through the continuity equation, are linked to areas of vertical 

motions and active weather/precipitation. As shown in the example in Figure 6, while the broad scale 

geopotential pattern of the Pangu-Weather forecast appears plausible, the intensity of the ageostrophic 

motions (and by implication, the diagnosed vertical motions and precipitation) is not.  



 

 

   

Figure 6: T+72 forecasts of geopotential height (continuous lines, units dam), and ageostrophic wind 

(wind arrows and shaded areas for intensity, units m/s) at 200 hPa valid on 2018-11-24 at 00 UTC. 

Left panel: Pangu-Weather forecast. Right panel: ECMWF IFS forecast. 

 

4.2. Rotational and divergent wind components 

The Helmholtz decomposition (Dutton, 1976) allows to uniquely partition the total circulation 𝒖 =

(𝑢, 𝑣) into divergent (‘vorticity free’) and rotational (‘divergence free’) components: 

𝒖 = 𝒖+ + 𝒖+ = −∇𝜒 + 𝐤 × ∇𝜓						(3) 

where χ is the velocity potential function, and ψ is a streamfunction. χ and ψ can be obtained from 

the divergence (𝛿) and vorticity (𝜁) fields, i.e.: 

 ∇,χ = 𝛿,  ∇,ψ = 𝜁.            (4) 

Divergence and vorticity fields thus allow to estimate the dynamical consistency of the forecasted 

wind, in a manner analogous to what the geostrophic balance allows to do in terms of the dynamical 

consistency of mass and wind fields. 

In Figure 7 we present vertical profiles of the ratio of the globally averaged absolute values of the 

divergence and vorticity fields for the ERA5 analysis, Pangu Weather forecasts, ERA5 forecasts and 

IFS operational forecasts. It is striking how this ratio is significantly and progressively reduced with 

increased forecast lead time in Pangu Weather forecasts, while remains approximately constant and 



 

 

close to that of the ERA5 analysis in both ERA5 forecasts (which are IFS forecasts run at the same 

resolution and with the same IFS model cycle used for the ERA5 reanalysis production) and 

operational IFS forecasts.  The divergent component of the flow is significantly suppressed in 

Pangu Weather forecasts with respect to the rotational component (and also in absolute terms, not 

shown here), which is unphysical and also implies that diagnosed vertical motions would be 

suppressed, as discussed in the next section.  

 

Figure 7: Vertical profiles of the ratio of the globally averaged absolute values of divergence over 

vorticity for: ERA5 analysis (continuous line) and Pangu Weather forecasts (dashed line), left panel; 

ERA5 analysis (continuous line) and ERA5 forecasts (double dashed lines), middle panel; ERA5 

analysis (continuous line) and ECMWF IFS forecasts (dot-dashed lines), right panel.   

 

4.3. Vertical motions 

Like other MLWP models Pangu-Weather does not explicitly produce a forecast of vertical velocities. 

However, it is possible, under certain assumptions, to diagnose vertical velocity fields from horizontal 

velocity fields on constant pressure levels by integrating the continuity equation in the vertical 

(Holton and Hakim, 2013, Sec. 3.5.1):  

 𝜔(𝑝) = 𝜔(𝑝-) − ∫ 𝑑𝑖𝑣(𝒖))𝑑𝑝						(5)
)
)!

   

𝜔(𝑝) ≅ −𝜌𝑔𝑤(𝑝)												(6) 

As the geostrophic wind is approx. non divergent, except for the small effect due to the variation of 

the Coriolis parameter, vertical velocity can be diagnosed from the mean layer horizontal divergence, 

together with the standard hydrostatic balance assumption. We have applied this diagnostic using 

forecasted horizontal velocity fields from Pangu-Weather, ERA5 hindcasts and IFS on standard 



 

 

pressure levels in the 1000-500 hPa layer. An example is given in Figure 8, where we show the vertical 

velocity field (w) at 500 hPa forecasted by the ERA5 hindcast on a specific date (top panel); the 

vertical velocity field at 500 hPa diagnosed using Eqs. 5,6 from the ERA5 hindcast (middle panel); 

and the vertical velocity field at 500 hPa diagnosed using Eqs. 5,6 from the Pangu-Weather forecast. 

Comparing the top and middle panels of Figure 8, it is apparent that while the diagnosed w is 

unrealistic in regions with significant topography (i.e., where isobaric surfaces end up below ground), 

it Is a qualitatively good proxy for the forecasted w in low lying areas and over the oceans. The other 

general feature that is apparent from inspection of Figure 8 is that the Pangu-Weather diagnosed w 

field (bottom panel) appears weaker, more diffuse than the ERA5 hindcast fields (both forecasted and 

diagnosed). This visual impression is quantitatively confirmed in Figure 9, where the evolution of the 

absolute value of the diagnosed vertical velocities averaged over the ocean are presented for the IFS 

forecasts, the ERA5 hindcasts and Pangu-Weather forecasts. Pangu-Weather vertical velocities are 

about 40% smaller than those of the ERA5 hindcasts (which have the same nominal spatial resolution) 

and about half in magnitude of those diagnosed from the IFS forecasts, which have higher resolution. 

Another notable aspect in this plot is the clear reduction of the intensity of vertical velocities in the 

Pangu-Weather forecasts during the first 24 hours, which is consistent with the reduction of the 

absolute value of the divergence-vorticity ratio shown in Figure 7. 



 

 

 

Figure 8: Global plots of vertical velocities (shaded, units: m/s) at 500 hPa from: ERA5 hindcast 

(top panel); diagnosed from ERA5 hindcast horizontal wind components using Equations 5,6 



 

 

(middle panel); diagnosed from Pangu-Weather forecast horizontal wind components using 

Equations 5,6 (bottom panel). Black isolines show geopotential height forecasts at 500 hPa from the 

corresponding systems. 

 

Figure 9: Forecast evolution of the absolute value of the vertical velocity field diagnosed with 

Equations 5,6 for the ECMWF IFS model (continuous line); the ERA5 hindcasts (dashed line); and 

the Pangu-Weather forecast (dash-dot line). Values averaged over the sea and the period 2023-09-

07 to 2023-9-10. 

 

All the three forecast maps presented in Figure 8 reveal the presence in the forecast of a developed 

tropical cyclone north of the Caribbean islands. This tropical cyclone corresponds to hurricane Lee, 

the strongest major hurricane of the 2023 Atlantic hurricane season at the time of writing (October 

2023), and a category 3 hurricane with a 948 hPa minimum mslp at the verification time of the 

maps in Figure 8 (12 September 2023, 00 UTC). It is thus of interest to look into more detail of how 

Pangu-Weather handles this extreme weather phenomenon. A partial answer is provided in Figure 

10, where we show a magnified view around the forecasted position of Hurricane Lee for the IFS, 

ERA5 and Pangu-Weather models. Note that the vertical velocities shown in all the plots in Figure 

10 are obtained using Equations 5,6 on forecasted horizontal wind fields on standard pressure 



 

 

levels. While the relative shallowness of the Pangu-Weather forecasted tropical cyclone is coherent 

with the diagnostics presented in Figures 7-9, the general noisiness and lack of realism of the TC 

simulated in the Pangu-Weather forecast raise further concerns about the ability of this MLWP 

model to provide a physically consistent picture of the evolution of the atmosphere.  

   

Figure 10: Plots of t+120 hours forecast vertical velocities (shaded, units: m/s) at 500 hPa from: 

IFS (left panel); ERA5 hindcast (middle panel); and Pangu-Weather (right panel), diagnosed using 

Equations 5,6. Black isolines show geopotential height forecasts at 500 hPa from the corresponding 

systems. Forecasts valid on 2023-09-12, 00UTC. 

 

5. Forecast performance 

The main purpose of this section is not to provide an exhaustive evaluation of the forecast skill of the 

Pangu-Weather model relative to the ECMWF IFS or EM operational products (see for example Ben-

Bouallegue et al., 2023, for more detailed comparison) but to highlight how the characteristics of the 

models discussed in the previous sections may affect the results of standard deterministic verification. 

To start with, it is important to understand that a fair comparison involves using forecasts that have 

seen the same observational information in their initialisation. In the Pangu-Weather literature (Bi et 

al., 2022, 2023) the Pangu-Weather forecasts are initialised from ERA5 reanalysis fields and 

compared with ECMWF IFS operational forecasts. This is understandable as Pangu-Weather has been 

trained on ERA5 reanalysis fields and thus should perform best when ERA5 reanalyses are used for 

initialisation. On the other hand, the assimilation window used in the ERA5 analyses is 12 hours long 



 

 

while the assimilation window used for the operational ECMWF IFS and EM forecasts is 6 hours 

long (i.e., for the 12 UTC analyses, the ERA5 assimilation window is 09-21 UTC, the ECMWF IFS 

window is 09-15 UTC). This results in the ERA5 analyses using observations up to 6 more hours into 

the forecast range than ECMWF IFS forecasts, which translates into an approx. 6-hour advantage in 

terms of forecast skill for the model using ERA% initial conditions. This can be significant for many 

variables (e.g., Figure 11). To avoid this confounding factor, we present in the following results 

obtained by initialising Pangu-Weather from operational ECMWF IFS analyses, though we 

acknowledge that this could be slightly disadvantageous to Pangu-Weather performance. 

 

Figure 11: Normalised forecast skill scores for ECMWF IFS initialised from a 6 hour ECMWF 4D-

Var assimilation window and ECMWF IFS initialised from a 12 hour ECMWF 4D-Var assimilation 

window: Forecast anomaly correlation for geopotential at 500 hPa (left panel); forecast RMSE for 

temperature at 850 hPa (middle panel); forecast RMSE for wind speed at 850 hPa (right panel. Values 

above the zero line indicate superior skill of the ECMWF IFS run from 12 hours assimilation window 

analyses.    

 

In Figures 12 and 13 we present summary plots of forecast performance for a selection of variables 

(geopotential, temperature, wind). These results are consistent with the diagnostics on forecast 

activity presented in Sec. 3. There is broadly similar skill in RMSE terms in the short range (day 1-

3) for all the models, consistent with the fact that all the models in the comparison show similar level 

of activity up to synoptic scale wavenumbers. In the medium-range (day 3-10) Pangu-Weather shows 

marginally improved performance over the ECMWF IFS, and significantly worse performance than 

the ECMWF ensemble forecast mean (EM). This behaviour is more apparent in the extra-tropics, 

where error growth is driven by loss of predictability of weather systems on synoptic scales, less in 



 

 

the tropics where errors have slower growth rates and are more influenced by large scale systematic 

errors.  

 

Figure 12:  RMS forecast error of 500hPa geopotential for the ECMWF IFS model (continuous line), 

Pangu-Weather (dash line) and ECMWF EM (dotted line) over the period 2018-10-01 to 2019-3-30, 

for the northern extra tropics (lat > 20 deg; left panel) and the southern extra tropics (lat < -20 deg; 

right panel). Verification against ECMWF analyses.  

 

 

Figure 13:  RMS forecast error of 850 hPa temperature (top) and u-wind (bottom) for the ECMWF 

IFS model (continuous line), Pangu-Weather (dash line) and ECMWF EM (dotted line) over the 

period 2018-10-01 to 2019-3-30, for the northern extra tropics (lat > 20 deg; left panels), the tropics 

(  20 deg >lat > -20; middle panels) and the southern extra tropics (lat < -20 deg; right panels). 

Verification against ECMWF analyses.  

 



 

 

       

Discussion and Conclusions 

The field of ML weather forecasting has made huge progress in a very short (by traditional NWP 

development timelines) period of time, helped by the availability of high resolution, high accuracy 

training datasets like ERA5 and the more general progress in ML research and hardware and software 

tools. The best performing MLWP models routinely claim better performance than state-of-the-art 

traditional NWP models on a variety of deterministic forecast scores, while using orders of magnitude 

less computational power and energy than standard NWP models during their deployment phase 

(though they are completely reliant on reanalysis datasets which have themselves been assembled 

using orders of magnitude more computational resources and energy than any current operational 

NWP forecast). While these advantages appear compelling from an end-user perspective, it is 

important to realise some of the limitations inherent in the current generation of ML models, at least 

as much as they can be inferred from an analysis of the characteristics of an example ML model 

(Pangu-Weather). Pangu-Weather has been chosen because we believe it is broadly representative of 

the current generation of ML models and has been an early adopter of an open data and model policy. 

We plan to extend this analysis to other ML models, but we expect that main findings will generally 

hold. 

One main finding of this analysis has been that Pangu-Weather (and by extrapolation, other current 

ML models) is not a general-purpose atmosphere simulator or, to use a terminology that has become 

popular in recent years, a ML-driven atmospheric digital twin. This is already apparent from the 

power spectra of Pangu-Weather forecasts when compared to those of the ERA5 analyses used for its 

generation and those of the ECMWF IFS model. Pangu-Weather forecast spectra show decreasing 

energy with increasing wavenumber (higher spatially resolved scales) and with increasing forecast 

lead time. This is in line with the common empirical observation that ML weather models produce 

progressively smoother, blurrier forecasts. What is possibly not so widely appreciated is that the shape 

and evolution of its forecast spectra imply that Pangu-Weather forecasts have limitations in 



 

 

representing fundamental dynamical balance relationships in the atmospheric motions, e.g., in the 

examples discussed here, those implied by geostrophic and ageostrophic flows and the ratio between 

divergent and rotational wind components. Additionally, the fact that these balances are not satisfied 

implies that other quantities that can be diagnosed or inferred from the mass field and the horizontal 

flow, e.g., vertical motion fields and, by extension, areas of precipitation/active weather, will also be 

unrealistic, which can be a limiting factor from a weather forecaster perspective. In a sense, this 

behaviour is not surprising, as ageostrophic and divergent flows are intrinsically less predictable than 

balanced and rotational flows, while the current generation of MLWP models are built to discover 

and reproduce predictable regressions between current and predicted states of the atmospheric 

training dataset.   

Pangu-Weather, like all ML models considered here, is trained to minimise a L1/L2 loss function of 

forecast errors. This leads to the expectation that these models should better be considered estimators 

of the central moment of the forecast error pdf (median/mean). However, this interpretation is not 

completely straightforward. A comparison of the spectra of Pangu-Weather forecasts with those of 

the ECMWF operational ensemble forecast mean shows some discrepancies. In particular, Pangu-

Weather forecasts do not present the signature drop in energy of the ECMWF EM at synoptic scales 

in the medium range (3-5 days), which is associated with the loss of predictability at these lead 

times/spatial scales due to the chaotic growth of initial and forecast uncertainties (Žagar, 2017), while 

they consistently show reduced forecast variability at smaller (sub-synoptic, mesoscale) spatial 

scales. This reduced forecast activity is also dependent on forecast lead time, more visibly during the 

first 24 hours, which implies significant heteroscedasticity in the distribution of forecast errors with 

forecast lead time. These results agree with recent work (Selz and Craig, 2023) documenting the 

inability of Pangu-Weather to produce realistic error growth from small-amplitude initial condition 

perturbations (i.e., lack of a “butterfly effect”). For these reasons, using effectively Pangu-Weather, 

and other similar ML models, in an ensemble forecast configuration may turn out to be more 

challenging than commonly anticipated, at least in terms of following the currently accepted paradigm 



 

 

of building forecast ensembles as collections of equiprobable realisations of physically consistent 

model trajectories.   

The above considerations are also important in an objective evaluation of the forecast performance 

of Pangu-Weather and similar ML models. Forecast models with reduced variability and which do 

not present the standard upscale error growth of physics-based models (Selz and Craig, 2023) tend to 

perform better on deterministic forecast skill measures, especially at longer lead times (“double 

penalty” effect), and this is confirmed by results presented here. Whether this is a major reason of the  

good forecast skill of MLWP models, or only a contributing factor (for example, it is reasonable to 

expect these models to do a good job at correcting state-dependent systematic errors of the IFS) is a 

question that remains to be addressed. This also indicates that the intrinsic value of ML models will 

be better be evaluated on a more comprehensive set of measures in an ensemble forecasting context, 

where both the sharpness and reliability of the forecast pdf can be adequately assessed.  

While they cannot be classified as atmospheric emulators/digital twins, ML models like Pangu-

Weather can be better understood as forecast applications targeted at optimising specific aspects of 

forecast performance, i.e., minimising medium-range mean squared/absolute errors, over a range of 

representative atmospheric and near surface weather parameters. This is effectively a similar 

objective as that pursued by modern multivariate NWP post-processing techniques (Lakatos et al., 

2023), with the obvious advantage that ML models regressions use the analysis state (or an 

ensemble of analyses) state as a predictor, instead of having to wait for the output of a deterministic 

or ensemble NWP forecast system. This can be both effective and efficient for various medium and 

extended-range user applications (Lam et al., 2022) where the main drivers of predictability are on 

synoptic or larger scales, standard NWP models are affected by significant systematic errors and 

producing physically consistent forecast states is not crucial for the end user. In fact, the ability of 

ML models to provide skilful forecasts on synoptic scales in the medium range suggests that similar 

tools could be effectively applied to different forecast ranges with a judicious choice of loss 

functions and training curricula. Current ML models are optimised to minimise errors in the 24-72 



 

 

hour range. It is conceivable that for seasonal to climate prediction applications a loss function 

targeted at minimising errors on longer forecast ranges could prove effective in constraining error 

growth and reducing model drift on these longer time scales. At the opposite end of the forecast 

range spectrum, ML models trained to minimise errors on short (1-6 hour) timescales and with 

appropriate multivariate constraints in the loss function on forecast spectra could provide useful 

building blocks of an efficient MLWP ensemble prediction system able to realistically simulate the 

chaotic growth of initial and forecast uncertainties.  

More generally, the discussion above and the results presented here highlight one of the main 

challenges for the next generation of data-driven ML prediction models, namely, how to produce 

forecasts that are skilful and at the same time dynamically and physically consistent at all relevant 

spatial scales. This will increase the interpretability and trustworthiness of the ML prediction models 

and ultimately encourage user acceptance of their outputs.  

While it is clear that current ML models have a significant role to play in forecast applications, it is 

also important to keep in mind that they still inherently depend on a physics-based model and data 

assimilation system for both their training and their initialisation. The further development of the 

forecasting capabilities of the ML models is still fundamentally dependent on the undoubtedly slower 

paced but still necessary, methodical development of physics-based model and data assimilation 

systems.      

                   

ACKNOWLEDGMENTS 

The Author would like to thank Matt Chantry (ECMWF) for making the Pangu-Weather forecast 

dataset available and for interesting and challenging discussions on the subject of Machine Learning 

applications to Weather and Climate Prediction. Gregory Hakim (Univ. of Washington), Linus 

Magnusson, Tony McNally, Andy Brown and Florian Pappenberger (ECMWF) provided insightful 

comments for an earlier version of this manuscript, which are gratefully acknowledged. The Author 

would also like to thank many colleagues at ECMWF and participants to the ECMWF-ESA Machine 

Learning Workshop series for enriching discussions on this fascinating topic.     

 
 



 

 

 
REFERENCES 

Ben-Bouallegue, Zied, et al. "The rise of data-driven weather forecasting." arXiv preprint 
arXiv:2307.10128 (2023). 

Bi, K., L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian. Pangu-weather: A 3d high-resolution model 
for fast and accurate global weather forecast. arXiv preprint arXiv:2211.02556, 2022. 

Bi, K., Xie, L., Zhang, H. et al. Accurate medium-range global weather forecasting with 3D neural 
networks. Nature 619, 533–538 (2023). https://doi.org/10.1038/s41586-023-06185-3 

Bonavita, M., Schneider, R., Arcucci, R. et al. 2022 ECMWF-ESA workshop report: current status, 
progress and opportunities in machine learning for Earth System observation and prediction. npj 
Clim Atmos Sci 6, 87 (2023). https://doi.org/10.1038/s41612-023-00387-2 

Bonavita, M., and Coauthors, 2021: Machine Learning for Earth System Observation and 
Prediction. Bull. Amer. Meteor. Soc., 102, E710–E716, https://doi.org/10.1175/BAMS-D-20-0307.1. 

Bonavita, M., Hólm, E., Isaksen, L. and Fisher, M. (2016), The evolution of the ECMWF hybrid 
data assimilation system. Q.J.R. Meteorol. Soc., 142: 287-303. https://doi.org/10.1002/qj.2652 

Chen, L., F. Du, Y. Hu, F. Wang and Z. Wang, 2023a. SwinRDM: Integrate SwinRNN with 
Diffusion Model towards High-Resolution and High-Quality Weather Forecasting. arXiv preprint 
arXiv:2306.03110 

Chen, K., T. Han, J. Gong, L. Bai, F. Ling, J-J. Luo, X. Chen, L. Ma, T. Zhang, R. Su, Y. Ci, B. Li, 
X. Yang, W. Ouyang, 2023b. FengWu: Pushing the Skillful Global Medium-range Weather Forecast 
beyond 10 Days Lead. arXiv preprint arXiv:2304.02948 

Dosovitskiy, Alexey; Beyer, Lucas; Kolesnikov, Alexander; Weissenborn, Dirk; Zhai, Xiaohua; 
Unterthiner, Thomas; Dehghani, Mostafa; Minderer, Matthias; Heigold, Georg; Gelly, Sylvain; 
Uszkoreit, Jakob, 2021. "An Image is Worth 16x16 Words: Transformers for Image Recognition at 
Scale". arXiv:2010.11929 

Dutton, JA, 1976: The Ceaseless Wind. An introduction to the theory of atmospheric motion. 
(McGraw–Hill, New York) 

ECMWF, 2022: 30 years of ensemble forecasting at ECMWF. Available at 
https://www.ecmwf.int/en/about/media-centre/focus/2022/30-years-ensemble-forecasting-ecmwf 

Hersbach, H, Bell, B, Berrisford, P, et al. The ERA5 global reanalysis. Q J R Meteorol Soc. 2020; 
146: 1999–2049. https://doi.org/10.1002/qj.3803 
 
Holton, J.R. and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology (Fifth Edition), 
Academic Press, ISBN 9780123848666, https://doi.org/10.1016/B978-0-12-384866-6.00039-8. 
 
Hsieh, W. W., 2023: Introduction to Environmental Data Science, Cambridge University Press. Doi: 
https://doi.org/10.1017/9781107588493 



 

 

 
J. Holton, An introduction to dynamic meteorology. Fourth edition. (Elsevier Academic Press, 
2004) 
 
Keisler. R., 2022; Forecasting global weather with graph neural networks. arXiv preprint 
arXiv:2202.07575 
 
Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, C. J. Schreck, 2018: International Best 
Track Archive for Climate Stewardship (IBTrACS) Project, Version 4. NOAA National Centers for 
Environmental Information. doi:10.25921/82ty-9e16 

Krasnopolsky, V., 2023: Review: Using Machine Learning for Data Assimilation, Model Physics, 
and Post-Processing model outputs. Office note (National Centers for Environmental Prediction 
(U.S.)); 513. DOI: https://doi.org/10.25923/71tx-4809 

Lakatos, M., Lerch, S., Hemri, S. & Baran, S., 2023. Comparison of multivariate post-processing 
methods using global ECMWF ensemble forecasts. Quarterly Journal of the Royal Meteorological 
Society, 149(752), 856–877. Available from: https://doi.org/10.1002/qj.4436 

Lam, Remi and Sanchez-Gonzalez, Alvaro and Willson, et al., 2022: GraphCast: Learning skilful 
medium-range global weather forecasting. Arxiv preprint https://arxiv.org/abs/2212.12794 
 
Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev.,102, 409–418. 

McGovern, A., R. J. Chase, M. Flora, D. J. Gagne, R. Lagerquist, C. K. Potvin, N. Snook, and E. 
Loken, 2023: A Review of Machine Learning for Convective Weather. Artif. Intell. Earth Syst., 2, 
e220077,  https://doi.org/10.1175/AIES-D-22-0077.1. 

Pathak, J., S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth, D. 
Hall, Z. Li, K. Azizzadenesheli, et al. Fourcastnet: A global data-driven high-resolution weather 
model using adaptive fourier neural operators. arXiv preprint arXiv:2202.11214, 2022 

Pu Z., Kalnay E. (2018) Numerical Weather Prediction Basics: Models, Numerical Methods, and 
Data Assimilation. In: Duan Q., Pappenberger F., Thielen J., Wood A., Cloke H., Schaake J. (eds) 
Handbook of Hydrometeorological Ensemble Forecasting. Springer, Berlin, Heidelberg 

Schneider, R., Bonavita, M., Geer, A. et al. ESA-ECMWF Report on recent progress and research 
directions in machine learning for Earth System observation and prediction. npj Clim Atmos Sci 5, 
51 (2022). https://doi.org/10.1038/s41612-022-00269-z 

Selz, T., and G. C. Craig. Can artificial intelligence-based weather prediction models simulate the 
butterfly effect?. ESS Open Archive . August 04, 2023. DOI: 
10.22541/essoar.169111361.10601606/v1 

Sønderby, C. K., and Coauthors, 2020: MetNet: A neural weather model for precipitation 
forecasting. arXiv, https://doi.org/10.48550/ARXIV.2003.12140 

Toth, Z., and E. Kalnay, 1997: Ensemble Forecasting at NCEP and the Breeding Method. Mon. 
Wea. Rev., 125, 3297–3319, https://doi.org/10.1175/1520-



 

 

0493(1997)125<3297:EFANAT>2.0.CO;2. 

Tung, N., J. Brandstetter, A. Kapoor, J. K. Gupta, and A. Grover. ClimaX: A foundation model for 
weather and climate. arXiv preprint arXiv:2301.10343, 2023 

Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N.; 
Kaiser, Lukasz; Polosukhin, Illia, 2017. "Attention Is All You Need". arXiv:1706.03762 

Žagar, N., 2017. A global perspective of the limits of prediction skill of NWP models, Tellus A: 
Dynamic Meteorology and Oceanography, 69:1, DOI: 10.1080/16000870.2017.1317573 


